Rappe

L'impulsion en Physique Quantique est représentée par un opérateur agissant sur la fonction d’onde.

) L dy(x)
pY(z) = —th— —

Plus en général, chaque quantité physique observable en Physique Quantique es représentée par un
opérateur. La position est représentée par 'opérateur position, qui agit sur une fonction en la multipliant par

sa variable
z(x) = wip(x)

Nous avons étudié le puits de potentiel avec barrieres finies. Ses états propres confinés sont quantifiés et les
fonctions d’onde sont non-zéro méme dans les régions des barrieres qui seraient interdite pour une particule
classique.

Ce phénomene, appelé effet tunnel, est tres commun en Physique Quantique et on I'a étudié également pour
une particule qui traverse une barriere de potentiel.
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Lien avec le rayonnement électromagnétique et le photon



Le processus de mesure en Physiqgue Quantique

Une théorie physique doit décrire correctement les résultats des mesures expérimentales.
En Physique Quantique, le processus de mesure est en général caractérisé par un comportement aléatoire.

Si un systéme se trouve dans un état décrit par une fonction d’onde (), la mesure de la position x donne une
valeur aléatoire, dont |a distribution de probabilité est

P(z) = [(z)[*

Que veut-il dire «aléatoire»?

Supposons que I'expérimentateur dispose de N particules et que |'état de chaque particule est le méme, c.-a-d. il
est décrit par la méme fonction d’onde 1 (x)

'expérimentateur effectue le méme processus de mesure de I'observable Z sur chacune des N particules.
Chaque mesure donnera un résultat en principe différent. Appelons ces résultats

X0, T1y -+, TN

La théorie dit que ces N valeurs de x vont étre distribuées selon la distribution de probabilité P(x).



Le processus de mesure en Physiqgue Quantique

Supposons maintenant que I'expérimentateur effectue la mesure de & sur une particule qui se trouve dans I'état
décrit par la fonction d'onde () . Il obtient le résultat x,.

On rappelle que dans ce raisonnement on ne fait pas intervenir les possibles erreurs de mesure, car il est
toujours possible d’imaginer un processus de mesure assez avancé pour rendre ces erreurs négligeables.

'expérimentateur maintenant décide de vérifier son résultat et il effectue donc une deuxiéme mesure de Z sur
la méme particule qui avait déja subi la premiére mesure. Dans ce cas l'expérimentateur trouvera, avec
certitude, la méme valeur x, mesurée avant.

Ce fait est prévu par la théorie et confirmé par les plusieurs expériences qu’on effectue chaque jour.
Comment la deuxieme mesure peut-elle donner le méme résultat avec certitude?

La seule explication compatible avec la Physique Quantique est que, apres la premiere mesure, la particule se
trouve dans un nouvel état, en général différent de ¢)(x)

Dans ce nouvel état, la probabilité de mesurer x=x, doit étre égale a 1 (et toutes les autres valeurs doivent avoir
probabilité nulle).

Ce changement d’état, apres une mesure, s'appelle «collapse de la fonction d’onde». Il est implicite dans le
processus de mesure. |l n’est pas simplement produit par la perturbation que I'instrument de mesure induit sur
le systeme. Autrement, on pourrait I'éviter en concevant un processus de mesure plus «gentil». Mais ¢a c’est
impossible selon la théorie, et le collapse est en général inévitable.



Le processus de mesure en Physiqgue Quantique

Quelle est la fonction d’onde 1 (x) qui a cette propriété?

Méme si les détails mathématiques sont un peu fastidieux, la fonction d’onde qui donne la certitude que Ia
mesure de la position donne le résultat x,, est la fonction «delta» de Dirac

Yo () = 0( — o)
Nous savons que cette fonction est différente de zéro partout sauf en x=x,. Par contre en x=x, elle vaut infini, car

son intégrale doit étre égal a 1. Le carré de cette fonction est également mal défini.

En réalité, formellement cet objet est une «fonction généralisé». Elle n’a un sens que comme argument d’une
intégrale. Pour les besoins de la Physique Quantique, cela nous suffit, car la fonction d’onde est principalement
utilisée dans des intégrales, pour calculer les valeurs moyennes.

La fonction delta est définie ainsi: pour toute fonction f(x), on a

b

dr f(x)d(x — zg) = f(x0)

a

a condition que la valeur x, soit inclue dans l'intervalle [a,b].



Le processus de mesure en Physiqgue Quantique

La fonction d’onde Y., () = 6(x — zo) a une propriété spéciale si on lui applique I'opérateur position
i () = i ()
= xd(x — x0)
= xod(x — 20)

Ici, la premiére égalité suit de la propriété de l'opérateur 2 . La troisieme ligne s’explique par le fait que la
fonction delta est zéro partout sauf en x=x,. Donc on peut remplacer la variable x par la valeur fixe x,.

La relation qu’on vient d’obtenir dit que la fonction ¥, (z) = d(z — x0) est une «fonction propre» de
I'opérateur 1 , avec valeur propre x,.

4 %o (CC) — &0 wmo (37)



Le processus de mesure en Physiqgue Quantique

Les fonctions propres des opérateurs associés aux quantités observables jouent un réle fondamental dans le

processus de mesure. .
Ay () = anthp(x)

Les seules valeurs possibles de la mesure de I'observable 4 sont ses valeurs propres a,

Si I’'état de la particule est un des états propres de 4 — supposons ?7042 (513) — alors la mesure de 4 donnera avec
certitude la valeur a,,

Si, par contre, la particule se trouve dans un état ¢($) guelconque, on peut toujours exprimer cet état par un
expansion en états propres de 4. On suppose toutes les fonctions normées. Cela implique

2
(x) = E () avec E lej® =1
J J
Si I’état avant mesure est 7,D(:E), alors la mesure de 4 donnera de fagon aléatoire une des valeurs propres a, avec

probabilité 5
Pn — ‘Cn‘

U'état de la particule aprés la mesure sera ¥, (3?) . A partir de cet état, toutes mesures suivantes de A donneront
avec certitude la méme valeur an



Le processus de mesure en Physiqgue Quantique

Supposons d’avoir deux quantités observables A et B. Les opérateurs correspondants seront A et B.

Si les deux opérateurs «commutent», c.-a-d. si
A, Bl=AB—-BA=0
alors on peut trouver un ensemble d’états qui sont états propres de A et de B

At () = antbn(z)  Bion(z) = bpthn ()

Dans un tel cas, en partant d’un état quelconque, la mesure de A donnera une des valeurs propres an, et par la
suite la mesure de B et de A, effectuées sur le méme systeme, donneront toujours les valeurs an et bn.

Si, par contre, [A B] 7& O , alors chaque opérateur aura un ensemble d’états propres différents. Un état propre
de A ne sera pas en general aussi état propre de B.

A¢n($) = anPn () Bopn(x) = bpon(T)
Dans ce cas, en partant d’un état quelconque, des mesures alternées de A et de B pourront donner en général

des valeurs différentes.

Mes. de A -> a3. Nouvel état w?) (39) Mes. de B -> b7. Nouvel état ¥7 (517) Mes. de A -> al5. Nouvel état ¢15($).
etc.



Le processus de mesure en Physiqgue Quantique

Quels sont les fonctions propres de l'opérateur impulsion? On a vu que

Pour trouver les fonctions propres il faut donc résoudre

di(z)
dx

—ih = py(z)

La solution est

w(x) . Beipm/h

L'onde de de Broglie est donc une fonction propre de I'impulsion. Si on mesure I'impulsion d’une particule qui se
trouve dans cet état, on obtiendra avec certitude p comme résultat de la mesure.



Le processus de mesure en Physiqgue Quantique

A remarquer que l'onde de de Broglie est infiniment étendue dans I'espace. La particule dans cet état a donc une
probabilité uniforme de se trouver a tout endroit de I’'espace.

L'état pour lequel la mesure de p donne un résultat certain, a un maximum d’incertitude si on mesure x.

Vice-versa, |'état décrit par la fonction delta de Dirac est tel que la mesure de x donne une valeur certaine. On
peut montrer que pour cet état la mesure de p est caractérisée par une incertitude maximale.

Il s’agit encore d’'une manifestation du principe d’incertitude de Heisenberg.



L'oscillateur harmonique classique

L'oscillateur harmonique classique est le modele d’'une particule de
masse m, soumise a une force de rappel F=-kx. Cette force est donc
proportionnelle au déplacement de la position d’équilibre x=0, et
s‘'oppose a ce déplacement. Cette force est décrite par une potentiel

X
de la forme
1
2N 2
U(x):§mw X w=\Vk/m
Si on déplace la masse a la position x=-A et on laisse évoluer, la masse
va osciller entre les positions x=-A et x=+A. A ces deux points, la vitesse
est nulle et toute I'énergie est de type potentiel: E = mw2A2/2 u
En x=0, I'énergie potentielle est nulle et toute |'énergie est de type
cinétique: | — mUQ/2
I
I
X




L'oscillateur harmonique classique

On remarque deux propriétés fondamentales

Toutes valeurs de A sont admises: on peut initier le mouvement en
choisissant le déplacement initial A sans contraintes. Puisque I'énergie

totale est X
E =mw?A?/2

on déduit que toutes les valeurs de I’énergie sont admises.

Une fois choisi la déplacement initial A, |a masse oscille entre x=-A et

x=+A. Il est impossible pour la masse de se déplacer plus loin d’'une

distance A de la position d’équilibre. X
I
I

| 1 X




L'oscillateur harmonigue quantique

On décrit l'oscillateur harmonique quantique avec |I'équation de Schrodinger

W d?e(x)
2 2
>+ L v(x) = EY(x)
2m  dx 2
Comme pour la particule dans un puits de potentiel, il faut trouver les solutions de cette équation différentielle
qgui en plus satisfont les conditions au bord. Ici en particulier, il faut s’assurer que la solution décroiten x — +o0
suffisamment vite pour gu’elle ait une norme finie.

On remarque que la fonction Gaussienne est une solution possible

(z) = Be O™

ou B est la constante de normalisation et C est a déterminer. Si on remplace dans I'équation, on obtient

i 1
( 2C + 4C*x 2) + —mw?z? = E
- 29m 2
Il faut donc annuler les termes proportionnels a x? et les termes constants séparément. Ceci est possible pour
mw 1
C = E=—-hw
2k 2



L'oscillateur harmonigue quantique

La solution gu’on vient de trouver correspond a [‘état fondamental de
l'oscillateur harmonique quantique.

On remarqgue deux différences fondamentales par rapport au cas classique

[Reppe—

L'énergie totale de I'état fondamental est plus grande que zéro, I U(x)
contrairement au cas classique (ou on peut mettre la particule a la position I | (}()|2
d’équilibre et sans mouvement). On avait déja trouvé ce résultat dans le cas : W

du puits de potentiel carré. Cette énergie, pour un systeme confinég,
s'appelle «énergie du point zéro».

La probabilité de trouver la particule est finie méme au-dela des deux
positions qui représentent la limite du mouvement classique (ou I'énergie
totale est égale a I'énergie potentielle). Il s’agit encore une fois de la
manifestation de I’effet tunnel, qui caractérise les systemes quantiques

s e ] -—— -

b(z) = Bem (me/2” By = g




Oscillateur harmonique: états excités

On peut trouver I'ensemble des solutions de I'équation de Schrodinger pour l'oscillateur harmonique, mais ca
demande un peu de calculs. Ici on donne directement le résultat pour tous les états propres et énergies.

wn(aj) _ Ban ( /%33) e—(mw/Zﬁ)w2

1
En(n+§>hw n=20,1,2, ...

Les fonctions H, sont des polynémes spéciaux: les polyndmes de Hermite, et B, les constantes de normalisation
Hp(z) =1
Hi(x) =2
Hy(z) = 4a* — 2



Oscillateur harmonique: états excités

2 1
Yn(x) = B Hy (1 / %x) e~ (mw/2h)2” @ (’n + 5) ho n=0,1,2,...

On remarque que les énergies propres sont uniformément espacées. Le résultat est surprenant, car on retrouve
exactement la quantification de I’énergie introduite phénoménologiquement par Max Planck en 1900!!!

U(x)
Ey =4 ho
Ey = 3 ho
Ey =1 ha
N Ey =3 ho
Elzgﬁa)
17 Eo = 5 ho )
0




Oscillateur harmonique: états excités

Les fonctions d’onde (gauche) des états avec nombre quantique n sont paires (par rapport a x-> -x) pour n pair, et
impaires pour n impair.

Les densités de probabilité (droite) montrent une probabilité finie de trouver la particule en dehors de la limite
classigue du mouvement. En revanche, certains points a I'intérieur de la région de |I'espace classiquement admise
sont interdits!

A YL (x)
W (x)

—E6 §
Ea = S— A
= A ——a
E; / W, (x)
E, - W, (x)
Eallie.. WX
ho & W ()
hayv2 X

. i o




Lien avec I'électromagnétisme

En 1927, Paul M. Dirac pour la premiere fois a établi le lien entre les lois de I'électromagnétisme et la
physique quantique. Il a ainsi initié le domaine de I'électrodynamique quantique.

Intuitivement, une onde électromagnétique a une fréquence angulaire @ donnée, se comporte comme un
oscillateur harmonique. Les champs électrique et magnétique oscillent a chaque point de I'espace avec une
loi harmonique.

On peut appliquer la théorie de l'oscillateur harmonique quantique au champ électromagnétique. La
procédure est connue sous le nom de «deuxieme quantification».

La conséquence naturelle est que les valeurs propres de I’énergie totale de I'onde électromagnétique sont
quantifiées, et que le quantum d’énergie est AE = hw

L'électrodynamique quantique permet ainsi d’expliquer trés naturellement I’hypothese initialement formulée
par Planck en 1900.

L'électrodynamique quantique permet aussi d’expliquer la nature corpusculaire du photon et son
interaction avec d’autres particules chargées. La théorie a été développée par plusieurs scientifiques apres
1927, et a constitué le premier succes dans la recherche d’une théorie de grande unification des forces
fondamentales, qui a aujourd’hui n’est pas encore conclue.



Questions ouvertes

Comment on résout |'équation de Schrodinger pour d’autres modeles physiques? Par exemple pour
I'oscillateur harmonique, ou pour les électrons autour des atomes?

Comment on généralise la théorie au cas avec plusieurs particules en interaction?

Avec une théorie quantique a plusieurs particules en interaction, arrive-t-on a expliquer la structure des
atomes et de la matiere en général?
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